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The use of functional MRI (fMRI) in neurofeedback (fMRI-NF) 
has brought new hope to the field of self-guided neuromod-
ulation. fMRI-NF allows individuals to modulate spatially 

localized neural patterns in real-time, using contingent reward-
ing feedback. Accumulating evidence suggests that in many cases, 
attaining significant neural modulations in line with the task pro-
tocol (i.e., NF success) is followed by corresponding mental and 
behavioural changes1, thus contributing to bridging the gap between 
brain functionality and our mental experience. Despite this promis-
ing prospect, the utilization of fMRI-NF for basic science as well 
as for clinical purposes has been slower than expected. This may 
be due to various methodological constraints, such as the lack of 
proper control conditions and inadequate blinding and randomiza-
tion, as well as the relatively small sample sizes that characterize the 
field. Furthermore, brain-guided interventions do not correspond 
with current psychiatric categorization, which traditionally relies 
on subjective reports rather than on neurobehavioral substrates2,3. 
Together, these limitations have hampered tangible conclusions 
regarding the clinical relevance and efficacy of fMRI-NF4–6.

It is generally acknowledged that, to improve precision and effi-
cacy of psychiatric treatments, new insights regarding the psycho-
logical and neural substrates of maladaptive behaviours should be 
incorporated into the conceptualization of mental disorders7,8. Such 
insights imply that the brain is functionally organized around sev-
eral neural circuits that subserve perception, motivation, cognition, 
emotion, and social behavior9–12. In line with this, we put forward a 
new framework termed ‘process-based NF’, which suggests that NF 
interventions should target specific dysfunctional mental processes 
by modifying their underlying neural mechanisms (Fig. 1a–c).

A crucial organizing principle in process-based NF is that a cor-
respondence should be established between different aspects of the 
intervention (neural target, feedback interface, outcome measures, 
and study population) and a specific, functionally defined mental 
process targeted for modulation, which in turn should generate 
exact, evidence-based predictions of clinical efficacy. This principle 
of correspondence and its benefits can be exemplified with the case 
of NF treatment for major depressive disorder (MDD). In com-
mon practice, the main outcome measure for MDD treatments is 
symptom severity (for example, Dekte et al.13 and the Hypericum 
depression trial study group14). However, MDD is in fact a clini-
cal syndrome comprised of various distinct groups of symptoms, 
including mood and motivational dysfunctions (for example, 
anhedonia), cognitive rumination, anxiety, and abnormal sleep 
patterns15. Importantly, each of these classes of symptoms is associ-
ated with a distinct mental process and its associated neural mecha-
nism16. By targeting an impaired mental process, such as deficient 
approach motivation (which is thought to underlie anhedonia), 
rather than overall depression severity, it is possible to match the 
intervention’s neural target for modulation—for example, certain 
features of the extensively investigated mesolimbic reward sys-
tem11,17,18—with specific hedonic outcome measures. For the lat-
ter, one could apply a subjective report questionnaire of hedonic 
experience (for example, the Snaith–Hamilton Pleasure Scale19) 
and objective measures of responsivity to reward (for example, 
the monetary incentive delay task20), both known to be specifically 
mediated by the targeted mesolimbic circuit21,22. Furthermore, for 
the sake of clinical precision, a process-based approach also calls 
for a shift in the current focus from supposedly pure diagnostic 
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Fig. 1 | Process-based NF framework. Three principal elements of process-based NF interventions: functional process and neural target selection; feedback 
interface; and outcome measures. a, Three functional processes, associated with three distinct neural targets (represented schematically): cognitive 
control (blue), approach motivation (green), and potential threat (brown). Varying greyscale intensities indicate differential involvement of each process 
in three Diagnostic and Statistical Manual categorical disorders: substance use disorder (SUD), MDD, and specific phobia. b, Feedback interfaces adapted 
to correspond with the targeted process, via process-specific multimodal stimuli. In the illustrated example, a participant is navigating a supermarket 
scenario in VR. For cognitive control deficit in the context of SUD, feedback is displayed through addiction-related appetitive cues that change in size in 
proportion to modulation of cognitive control network activity. For deficient approach motivation in MDD, a rewarding smiling face of a sales assistant 
alters in proportion to modulation of the reward mesolimbic circuit neural activity. For potential threat dysfunction in specific phobia, a phobia-related cue 
changes in size in proportion to modulation of the threat neural circuit activity. c, Subjective and objective outcome measures that correspond with the 
targeted process. For cognitive control deficit, the Conners impulsivity scale and a go/no-go task. For deficient approach motivation, the Snaith–Hamilton 
Scale (SHAPS) is used to measure hedonic experience and reward responsivity is measured by the monetary incentive delay task. For potential threat, the 
subjective unit for distress scale and the no shock–predictable shock–unpredictable shock (NPU) task are used.
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Diagnostic and Statistical Manual15 or International Classification of 
Diseases23 grouping criteria. For instance, when targeting deficient 
approach motivation, a clinical study could include MDD patients 
that specifically suffer from anhedonia, as well as individuals with-
out a formal diagnosis of MDD who nevertheless exhibit substantial 
hedonic deficits, such as patients with Parkinson disease, substance 
use disorders, or schizophrenia24–26.

In this Perspective, we attempt to delineate the process-based 
approach for NF by associating it with various central aspects of the 
intervention. We begin by addressing the manner in which psycho-
logical processes and their underlying neural mechanisms may be 
ideally targeted and modulated. Following this, we discuss possible 
ways to optimize process targeting via feedback interface adjust-
ments. Finally, we discuss the NF general processes and offer pos-
sible designs and a new control condition for dissociating between 
NF-general task effects and those specific to the targeted process 
modulations. We assert that by applying such process specific modi-
fications, the NF field could offer a brain-guided psychiatric inter-
vention with greater scientific validity and enhanced efficacy.

Process-based neural targeting
Accumulating evidence from human neuroimaging studies suggests 
that psychiatric disorders share common trans-diagnostic structural 
and functional impairments in neural networks9,27–29. In accordance 
with this notion, a substantial body of work has demonstrated that 
network-level patterns, rather than focal neural patterns, encode 
core mental processes. For instance, emotion regulation is thought 
to be characterized by interplay between core limbic or salience 
circuits and regulatory prefrontal sets of regions30, rather than by 
isolated amygdala or prefrontal cortex (PFC) activity. Likewise, 
inhibitory control, a dysfunctional process in attention deficit 
hyperactivity disorder31 and substance use disorder32, was suggested 
to be linked with a set of frontoparietal networks rather than with 
a specific brain area such as the inferior frontal gyrus33. Moreover, 
recent works using multivariate analyses have shown that subjec-
tive experiences and mental states that relate to various pathological 
conditions are associated with distributed neural activations. This 
was recently demonstrated in pain34,35, sustained attention36, and 
negative affect37. It follows that the dysfunctions of neuropsycholog-
ical processes in psychiatric syndromes are mediated by distributed, 
network-level abnormalities, rather than focal impairments9.

Interestingly, network-level functional changes were shown to 
occur following single-region fMRI-NF. For example, several studies 
have demonstrated that PFC and amygdala connectivity was altered 
following amygdala downregulation NF38–40. Likewise, Cohen-
Kadosh et al.41 found that insula fMRI-NF subsequently resulted 
in functional connectivity changes in an emotion-regulation net-
work. These results indicate that regulation of a single region, based 
on the classic univariate analysis of blood-oxygen level dependent 
(BOLD) activity, may conjointly lead to a distributed neural change. 
Hence the clinical efficacy of fMRI-NF interventions targeting sin-
gle regions may result from widespread network-level changes (for 
example, connectivity of the regulated region with other regions or 
networks), rather than from restricted alterations in the targeted 
region of interest. Considering these points, we posit that NF inter-
ventions should target brain networks (i.e., activity or connectivity 
indices) or distributed patterns that specifically mediate dysfunc-
tional processes, as outlined below.

Brain network matrices. Various NF targets have been previously 
applied to modulate network-level functionality, such as functional 
connectivity between two or more brain regions42–45, as well as 
more complex network dynamics indices (for example, dynamic 
causal modelling NF46,47). For instance, Yamada et al. attempted to 
alter dysfunctional hyper-connected patterns of the default-mode  
and frontoparietal networks by training participants to decrease 

functional connectivity between the posterior cingulate cortex and 
dorsolateral PFC, two respective key hubs of these networks44. Such 
practice resulted in a decrease in depressive symptoms, as measured 
with the Hamilton Depression Rating Scale, which was correlated 
with NF success. A different network-NF approach was recently 
developed by Jacob et al.48, which trained participants to modify a 
central region’s influence on an entire functional network. Results 
demonstrated the feasibility of facilitating changes in network func-
tional hierarchy via NF training.

Another method that efficiently measures the neural substrates 
of mental processes is multivariate or multivoxel pattern analysis 
(MVPA). MVPA captures neural information that is distributed 
over many voxels or regions in the brain. It has been used exten-
sively in the attempt to decode mental states from brain activa-
tion49,50, and more recently it has been implemented in real-time 
imaging51 and specifically in NF (in decoded neurofeedback, 
DecNef)52,53. Key assumptions of DecNef are that neural patterns 
that are congruent with a mental state can be manipulated and that 
the endogenous modulation of a mental state should lead to cor-
responding mental and behavioural changes. Hence this method 
may serve as a good surrogate for process-based NF (for a detailed 
review on DecNef applications see refs. 44,54). So far, DecNef has 
been applied to induce perceptual53, cognitive55, and affective modi-
fications56 in healthy individuals. More recently, this concept was 
clinically applied to individuals suffering from specific phobia57.  
In this study, a neurotypical activity pattern in the ventral temporal 
area was first calculated based on data from healthy individuals that 
were exposed to aversive stimuli, representing adaptive emotional 
processing. Subsequently, participants diagnosed with specific pho-
bia, exhibiting atypical responses to aversive stimuli, were trained to 
modulate their ventral temporal activity to resemble the predefined 
neurotypical voxel-wise pattern. Notably, this was achieved via an 
implicit learning procedure, associating desired changes in activ-
ity with positive reward cues, without exposing the patients to the 
object of their phobia.

Notwithstanding the above, process-based neural targeting may 
present several challenges. First, it is noteworthy that regulating 
complex distributed indices requires high signal reliability. To this 
end, using functional localizer tasks to better target individual net-
work nodes (possibly in combination with predefined anatomical or 
meta-analytic derived masks) could improve precision of network 
indices and consequently enhance signal reliability. In the case of 
dynamic causal modelling-based NF, sufficiently long time win-
dows should be used for the assessments of the different models, 
to enable precise feedback regarding network causal relationships. 
Such requirement might be met via intermittent feedback protocols. 
Another issue revolves around the scalability of the process-based 
intervention. fMRI holds a critical advantage over other recoding 
techniques for targeting defined neural mechanisms: its superior 
spatial resolution. Yet its limited accessibility might hamper fMRI-
NF clinical translation. Electroencephalograms (EEG), on the other 
hand, are cost-effective and mobile. However, due to poor spatial 
resolution, EEG’s ability to target functional processes associated 
with distributed cortical as well as subcortical areas is severely 
limited. Hence a measuring tool that offers both precise localiza-
tion and high accessibility is greatly needed for the applicability of 
process-based NF (Box 1). Another issue that arises when targeting 
processes for modulation is the consideration of subjects’ develop-
mental stage58,59, i.e., whether one should attempt to modulate brain 
regions associated with a cognitive process at the specific develop-
mental stage or simply target the brain networks associated with a 
given process in healthy mature adults. This is especially important 
if one considers the developing brain as an adaptive system, in which 
brain networks that support cognitive abilities change interactively 
as a result of ongoing brain maturation and cognitive develop-
ment60,61. Finally, although theoretical considerations suggest the 
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Box 1 | Process-based NF accessibility

EEG is an accessible and widely used NF recording device. How-
ever, it does not allow precise signal localization. Recent computa-
tional advancements have been used to overcome this issue by en-
hancing the spatial resolution of EEG recordings. These included 
low-resolution electromagnetic tomography (LORETA)108 or its 
variants109. However, LORETA necessitates the use of a dense grid 
of electrodes, limiting its mobility and accessibility, while being 
highly sensitive to noise, particularly for deep subcortical areas110. 
Other approaches have used fMRI to improve EEG localization in 
an attempt to develop a forward model that traces neuronal ac-
tivity from both recording channels111. However, such a model-
based approach relies on somewhat unsubstantiated a priori as-
sumptions regarding the biophysical origins of the EEG and fMRI 
signals. To overcome this, data-driven approaches were applied to 
associate the two signal-types112, using either simple correlations 
between EEG frequency bands and localized BOLD activity88,113,114 
or linear regression in which a combination of frequency bands 
predicts BOLD activity, which showed improved results115.

A general framework adopting the linear regression approach 
was recently developed using signal-processing and machine-
learning techniques, based on temporal and frequency analyses. 
This approach, termed EFP, successfully predicted fMRI BOLD 
activations in the amygdala and medial prefrontal cortex using only 
EEG data from single channels66,116. Furthermore, the amygdala 
EFP model was used in a NF design, yielding the first ever EEG-
NF intervention that enabled precise modulation of a subcortical 
region78,117,118. Results from a validation experiment demonstrated 
that participants who were trained outside the fMRI scanner to 
downregulate their amygdala EFP index not only successfully 
decreased amygdala BOLD activity during fMRI-NF in a following 
session but also showed reduced amygdala reactivity to threatening 
visual stimuli117. More recently, this method was applied in two 
studies, one involving healthy individuals undergoing a stressful 
military training program119 and one involving chronic pain 
patients120. Results indicated that repeated amygdala EFP training 
sessions had a beneficial effect on neural and behavioural indices 
of stress resilience and chronic pain symptoms, respectively.

This method and others that may follow hold important 
advantages for process-based NF over existing techniques. Most 
importantly, they combine the strengths of EEG and fMRI, 
providing both high accessibility and precise spatial localization. 
From a clinical perspective, the studies presented above pave the 
way for the development of additional ‘fingerprints’ for various 
target regions (for example, see Klovatch-Podlipsky et al.121, which 
present a right inferior frontal gyrus electrical finger print (EFP) 
model development), network-level indices, or multivoxel-based 
patterns. Furthermore, to maximize process targeting, various 
improvements of the feedback interface could be introduced, 
including the use of immersive virtual reality (VR) technologies 
that simulate highly naturalistic environments that facilitate 
improved learning, generalizability, and process-specificity 
(discussed in detail below). Many of these beneficial modifications 
are more suited to portable recording devises such as EEG than 
to the restricting clinical setting of magnetic resonance scanning.

However, the EFP approach contains some limitations. First, 
it does not monitor a specific region exclusively, but rather a set 
of regions that are co-activated along with the traced region. For 
instance, when examining the BOLD correlates of the amygdala 
EFP in an EEG–fMRI experiment, it was found that the EFP was 
associated not only with the signal fluctuations within the amygdala 
but also with additional functionally related regions117. Second, 
even though an EFP model was developed and validated for BOLD 
activations in a single region, fingerprinting more complex neural 
indices (for example, MVPA, network connectivity, etc.) might 
prove to be more challenging in terms of susceptibility to movement 
and/or physiological artefacts or other factors influencing signal 
to noise ratios. Future empirical work is expected to demonstrate 
whether reliable fingerprint models for such indices are feasible. 
Finally, it is assumed that an EFP index is a correlate of BOLD 
activations in a specific target region. However, this raises the 
question of whether an EFP model can be generalized to multiple 
contexts (for example, NF task, clinical outcome tasks, resting 
state scans, etc.). Future studies should provide evidence for the 
generalizability of the model across various functional datasets.

Development of process-specific electrical fingerprints.  A functional dataset of simultaneous EEG-fMRI recordings is collected. Subsequently, 
machine-learning algorithms are applied on the data to extract EEG features that correspond with the defined BOLD neural patterns of each target 
process. Based on these BOLD-predicting features, a scalable and process-specific NF training is enabled using only EEG. For detailed information 
regarding the EFP model development, see Meir-Hasson et al.64,106.
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superiority of network-based or distributed-pattern-based NF over 
single-region NF interventions, it is yet to be established that such 
indices may indeed lead to improved NF modulations and enhanced 
clinical outcomes. Future studies should thus compare between net-
work NF and single-region NF in terms of modulation success and 
clinical benefits.

Process-based feedback interfaces
The feedback interface forms the environmental setting of the inter-
vention. To date, the majority of NF studies have used simple forms 
of interfaces solely to indicate the level of neural activity change (for 
example, thermometer62,63, a visual analogue scale64,65, or sound66,67). 
These interfaces are usually one-dimensional (size or height; vol-
ume or pitch), unimodal (visual or auditory), and affectively neutral. 
Therefore, they hardly evoke a specific process by themselves. In 
contrast, process-specific adjustment of the feedback interface can 
considerably contribute to the targeting of dysfunctional processes 
in two ways: (i) by inducing an environmental context in which  
deficits are typically expressed, individuals may be guided to prac-
tice process-relevant strategies in situations similar to those they  
naturally struggle with, but in a safe and controlled clinical setting; 
and (ii) as the underlying neural mechanisms one is trying to alter are 
dysfunctional, provoking them in a process-specific manner might 
assist in recruiting them and thus promote the desired neurobehav-
ioral changes. Consequently, process targeting may become more 
precise, ecological, and clinically effective. In an attempt to promote 
such an approach, we discuss possible modes of context induction: 
the incorporation of multimodal contextual cues into the interface 
and the utilization of immersive feedback interfaces (Fig. 1b).

Contextual interfaces. Several NF studies have incorporated 
process-specific contextual cues into a neutral feedback interface, 
creating an emotional context for affective processes38,68–70. Paret  
et al.69 trained healthy participants to downregulate their amyg-
dala, a region involved in emotion processing and regulation, while 
viewing aversive photos with a thermometer indicating the level of 
neural activity from both sides of the image. Participants success-
fully regulated amygdala activity, and furthermore, NF success was 
correlated with post-practice amygdala regulation with no feedback 
(i.e., transfer effects, which indicate the generalization of acquired 
regulation skills). In two clinical studies, patients with borderline 
personality disorder and post-traumatic stress disorder (PTSD)39,40 
practiced amygdala downregulation while watching affective stim-
uli (pictures with affectively disturbing content or trauma-related 
words, respectively). Both groups exhibited widely distributed neu-
ral changes along with reduced dissociative symptoms.

Other than using process-specific contextual cues along with 
a neutral feedback display (for example, a thermometer), the 
feedback itself could represent the neural changes in a process-
specific manner. For example, Sokunbi et al.71 and Ihssen et al.72 
employed ‘motivational feedback’ interfaces, in which partici-
pants are presented with reward-related stimuli (for example, 
appetizing food) that change in size in proportion to BOLD fluc-
tuations in regions involved in motivational aspects of craving. 
Hence the attempt to up- or downregulate neural activity in itself 
facilitates process-specific motivational consequences. A similar 
approach might be taken with an ‘emotional feedback’ interface. 
Even though evidence of efficacy is still scarce, we can cautiously 
assume that if the undesired patterns of an affective neural target 
were represented by an aversive emotional feedback, participants 
may be specifically motivated to downregulate it. This might be 
true not only due to contextual affective induction, but also as suc-
cessful regulation results in attenuation of the aversive feedback. 
Furthermore, since affective interfaces may facilitate a stressful or 
unpleasant context that resembles process-relevant real-life situa-
tions, the acquired neural regulation skills may therefore be better 

generalized. Conversely, one could argue that such approach might 
encourage maladaptive avoidance tendencies that are inherent to 
the psychopathology, as is the case in obsessive–compulsive disor-
der and PTSD. A possible solution for this issue could be altering 
the content of the stimuli rather than its size or simulated distance 
from the trainee. For instance, in the case of motivational feedback 
for substance use disorder, alcoholic beverages could be gradually 
replaced with soft drinks.

Importantly, both modes of context induction are particularly 
relevant for the modulation of neural ‘hubs’ that underlie several 
processes (for example, insula, amygdala, etc.). For instance, Young 
et al.73 employed a hedonic-related context (via instructions: retriev-
ing positive memories) to guide amygdala upregulation for MDD 
patients with hedonic deficits. Alternatively, by incorporating nega-
tive affective stimuli cues into the interface, the amygdala was targeted 
for downregulation both for PTSD40 and borderline personality dis-
order39 patients. Further research should try to reveal in which cases 
could neural hubs that are involved in several processes be provoked 
in a process-specific manner via different types of context induction.

Aside from contextualizing the feedback interface, other feed-
back interface factors may be harnessed for process induction. These 
include the utilization of different feedback protocols for process 
targeting (Box 2) as well as NF task instructions (i.e., providing par-
ticipants with suggestions for specific process-related imageries)74,75.

Immersive interfaces. Recent applications in the rapidly evolving 
fields of VR and augmented reality (AR) may be used to simulate 
highly naturalistic environments enriched with process-relevant 
cues. Unlike the common one-dimensional and unimodal feed-
back, three-dimensional game-like interfaces enable presentations 
of multimodal dynamic stimuli76 that may improve learning and 
user experience77. Cohen et al. directly compared a unimodal ther-
mometer with a multimodal game-like NF interface and showed that 
the latter indeed resulted in improved learning, generalizability, and 
user experience78. Mathiak et al. compared simple visual feedback 
(a bar) with VR-based social reward feedback (a smile on an avatar 
face that is altered as a function of dorsal anterior cingulate cortex 
BOLD activity); results demonstrated that the VR interface induced 
increased target engagement and promoted learning79. Notably, 
immersive VR and AR environments allow substantial flexibility in 
context representation80, which may be highly beneficial in certain 
cases. For instance, people suffering from dysfunctions in threat pro-
cessing (for example, social anxiety disorders, PTSD, etc.) could be 
trained by associating their experienced virtual environment with 
their neural state, such that gaining control over threat-related neural 
targets would result in a more tranquil simulated environment that 
corresponds with their specific phobia (social- or trauma-related, 
etc.). This could further strengthen adaptive behaviours, for exam-
ple, approach towards phobia-related cues (Fig. 1b). Such applica-
tions correspond with the growing practice in psychiatry of applying 
VR environments in exposure procedures, mainly for the treatment 
of PTSD and phobias81–83. Several studies have used VR or AR to 
create process-specific contexts in the treatment of psychiatric and 
neurologic disorders84–86, demonstrating the feasibility of applying 
such therapeutic interventions. Yet these studies serve as small-scale 
proofs-of-concept that rely on EEG frequency bands with poor local-
ization. Hence further research is needed to realize the full clinical 
potential and efficacy of VR and AR technologies for NF training in 
general and within the process-based framework specifically.

Process-based NF specificity
To determine NF treatment specificity, the effects resulting from 
modulation of a specific target process must be differentiated from 
those of mere NF practice. To this end, five types of control condi-
tions have been applied thus far: (i) alternative NF, providing feed-
back from an alternative region; (ii) inverse NF, modulation of the  

Nature Human Behaviour | VOL 3 | MAY 2019 | 436–445 | www.nature.com/nathumbehav440

http://www.nature.com/nathumbehav


PerspectiveNaTuRe HuMan BehavIouR

experimental neural target in the opposite direction; (iii) yoked sham NF, 
presenting participants with sham feedback recorded from a matched 
subject from the experimental group; (iv) mental rehearsal, applying 
mental strategies with no feedback presentation; and (v) no treatment, 
a natural history control condition4. We note that there is a tendency to 
evaluate novel interventions such as NF according to the experimental 
standards of pharmacological randomized controlled trials. However, 
this is misleading, as pharmacotherapeutic placebo interventions 
affect only the underlying mechanisms of non-specific affective pro-
cesses, generally in the same manner as the real drug87. Active NF con-
trol conditions, on the other hand, manipulate sensory, cognitive, and 
affective aspects that may introduce two main classes of confounds:  
(i) modulations of additional processes that are not engaged in the 
experimental intervention and (ii) modulations of NF-general pro-
cesses that substantially vary from the experimental intervention. To 
eliminate these confounds, NF control conditions must involve the 
same general processes modulations as those of the experimental con-
dition, without any additional processes engagements (Fig. 2).

Converging evidence from various animal and human  
studies46,82,83,88 indicate that fMRI-NF involves three general pro-

cesses1: (i) control: applying different mental strategies in the 
attempt to modulate the presented feedback, associated with the 
lateral occipital cortex, posterior cingulate cortex, and dorsolat-
eral PFC; (ii) reward: valuation of positive or negative outcomes of 
applied strategies, associated with anterior cingulate cortex, ante-
rior insula, and ventral striatum; and (iii) learning: the consolida-
tion of associations between rewarding feedback cues and a desired 
neural activity pattern (or specific mental imageries), which may 
occur through operant learning mechanisms that involve the dor-
sal striatum. A recent meta-analysis by Emmert et al.89 revealed 
a network of regions activated during NF practice regardless of a 
specific neural target, composed mainly of prefrontal, mesolimbic, 
and striatal regions. This network corresponds with the underlying 
mechanisms of NF-general processes mentioned above and may be 
considered a general network of fMRI-NF. However, studies inves-
tigating NF general processes are still scarce and have yet to resolve 
disagreements between different NF learning models (for example, 
skill learning versus operant learning; see ref. 1). Notably, Paret  
et al.90 employed amygdala fMRI-NF and succeeded in dissoci-
ating feedback congruency monitoring (i.e., tracking feedback  

Box 2 | NF interface protocols

The most common form of a NF task is explicit (participants know 
they are receiving neural feedback and are given explicit task in-
structions) and continuous (i.e., feedback is calculated for each 
acquired functional brain volume and presented to the participant 
in real-time). Nonetheless, NF protocols vary in these important 
aspects, which may be used for process targeting. First, NF in-
terventions may be explicit or implicit to the subject. During an  
experiment using an implicit feedback protocol, participants receive 
rewarding feedback without conscious knowledge of its origin and 
without instructions for regulating it. Instead, they may either pas-
sively watch these target-contingent cues or conjointly perform an 
unrelated simple task (for example, a button-press). These features 
have the appeal of avoiding confounds of effort and of other cogni-
tive demands. Importantly, such confounds are critical specifically 
when trying to dissociate effects deriving from neuromodulation of 
attentional and executive functions (for an elaboration, see Fig. 3a).  
Moreover, implicit NF may be more suited to certain pathological 
conditions in which participants’ cognitive resources are limited, 
such as severe attention deficits, dissociative tendencies, or young 
or aged populations. On the other hand, one of the advantages of 
NF is the possibility of using it to reinforce specific imageries in  
patients122. To achieve this, explicit feedback presentation com-
bined with patients’ awareness of the contingencies between neural 
activation changes and rewarding feedback is necessary. Arguably, 
such explicit training may support patients’ ability to generalize 
their applied strategies to real-life situations. Furthermore, as  
explicit NF protocols demand patients’ active participation in the 
therapeutic process, they may promote participant engagement 
and possibly increase adherence to the therapeutic intervention. 
Finally, the use of contextual feedback interfaces (discussed here 
under “Process-based feedback interfaces”) may elicit awareness 
of the nature of the feedback, rendering it overt. This point should 
be taken into consideration when tailoring NF designs for pro-
cesses and pathological conditions that require covertness. Ini-
tial evidence has indicated that in some cases, implicit feedback 
protocols are effective43 and possibly preferable to explicit ones123 
(i.e., explicit task instructions may be counterproductive), while in 
other cases explicit designs were found to facilitate better results124. 
Future studies using implicit and explicit feedback protocols for 
different target processes should provide empirical evidence for 
these still-speculative pros and cons.

Another aspect that varies between NF designs that could 
be meaningful for process targeting is the timing of feedback 
presentation. Instead of the common continuous NF protocol, 
several studies have applied an intermittent design, in which 
participants are presented with feedback once every few 
acquired functional brain volumes or solely following the actual 
NF regulation block (for example, refs. 46,64,125; see Fig. 3a for an 
example time course). Intermittent feedback protocols hold the 
potential of minimizing reward-related confounds, which becomes 
particularly important when trying to determine specificity when 
targeting motivational processes (Fig. 3a). Furthermore, one can 
assume that the practice of process-specific imageries that require 
internally rather than externally oriented attention might benefit 
more from an intermittent rather than a continuous feedback, 
since constantly tracking and processing dynamically changing 
stimuli might be distracting. In such cases, less information 
might allow better learning. This was recently demonstrated 
for motor regions125 and for amygdala downregulation126. In 
the case of NF interventions for tinnitus, however, differential 
effects were observed: while intermittent feedback facilitated 
better regulation after a single session, continuous feedback was 
more effective for multisession interventions64. Moreover, even 
though artefact removal algorithms are applied on the data in 
real-time, continuous feedback is more affected by physiological 
and movement-related noise than the intermittent feedback, 
which is averaged over several functional time points, thus 
reflecting neuronal activity more reliably. This may be particularly 
important for complex indices such as network connectivity, 
MVPA, or dynamic causal modelling. Conversely, continuous 
feedback tends to be more engaging and interactive, an important 
feature for treatment adherence in general and especially for 
young populations. In addition, continuous feedback presentation 
might prove to facilitate a more ecological and coherent measure 
for mental experiences, which unfold in seconds-long time scales 
and may change rapidly.

These deliberations regarding the link between process 
targeting and feedback protocols still await further empirical 
evidence. Nonetheless, in face of the pros and cons debated here, 
the choice between implicit-versus-explicit and continuous-versus-
intermittent NF protocols should take the wider therapeutic context 
of the intervention into account to maximize process targeting.
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correspondence with task instructions; associated with the ventral 
striatum), feedback context monitoring (i.e., responses to differ-
ing task instructions; associated with rostral PFC), feedback activ-
ity monitoring (i.e., general feedback fluctuations; associated with 
thalamus and ventromedial PFC), and other task-related activa-
tions (including insula, anterior cingulate, and lateral PFC), thus 
providing a more intricate map of NF underlying mechanisms. 
Importantly, different NF protocols (Box 2) vary in their manipula-
tions of the general task processes. These differences could be capi-
talized to investigate the NF underlying mechanisms and to advance 
a more precise understanding as to which of the NF general pro-
cesses hold unique contribution in terms of modulation success and 
clinical benefits. Figure 3a presents two protocols that may be used 
to isolate reward and control processes. NF learning, however, pres-
ents a more complex challenge, as multiple learning processes may 
co-occur during NF1. One design that may unravel the involvement 
of stimulus–response contingencies in NF learning (the stimulus 
being the contingent feedback and the response being the neural 
target activations) could be an implicit NF design that excludes the 
voluntary use of regulation strategies, in which stimulus–response 
contingencies are varied between conditions via differential feed-
back timing protocols: a continuous condition, an intermediate 
intermittent condition (in which feedback is presented once every 
few functional time points), and a fully intermittent condition.

Dissociating NF-general from target processes. As Fig. 2 shows, 
confounds of both NF-general and additional processes are particu-
larly relevant to inverse NF and alternative NF. First, these control 
conditions involve not only NF-general processes but also an addi-
tional target process that is not manipulated in the experimental 
condition. Second, some targets are inherently harder to modu-
late than others91, as has been shown to occur in many cases90,92–94. 
Differences in ‘modulability’ between experimental and control 
neural targets incur discrepancies in task difficulty and, as a result, 

in the level of reward participants receive. An indication of both 
confounds has been recently shown by Alegria et al94. This study 
controlled for right inferior frontal gyrus fMRI-NF intervention for 
attention deficit–hyperactivity disorder patients, with alternative 
NF to the left parahippocampal cortex. Specifically, this alterna-
tive NF group exhibited increased activations in bilateral parahip-
pocampal cortex, right supplementary motor area, and additional 
frontotemporal regions involved in various motor and cogni-
tive functions95–97, which were not activated in the right inferior  
frontal gyrus NF group. Moreover, substantial differences between 
conditions were exhibited both in the absolute value of NF suc-
cess (the level of positive feedback differed between groups) and in 
transfer effects, possibly leading to confounds of reward processes. 
Consequently, treatment efficacy cannot be specifically attributed to 
the target process engagement with such control groups.

In contrast, yoked sham NF only manipulates NF-general processes, 
but in a different manner than the experimental condition. First, the 
lack of contingency between feedback and neural patterns could lead to 
major differences in NF reward processes, as participants may deduce 
they are not receiving veritable feedback98 and thus may reduce their 
motivation, task engagement, and positive expectations in relation to a 
genuine feedback group. Second, even when matching feedback vari-
ability between groups by ‘yoking’ in a double-blinded manner, there 
would still exist differences in NF learning, as no learning based on 
contingencies between neural patterns and feedback would occur. 
Corresponding to this last confound are the models of NF learning that 
stress the importance of associative (i.e., Hebbian) learning mecha-
nisms that rely on contingencies between stimulus and response. Thus, 
yoked-sham NF also cannot isolate the hypothesized factor.

Finally, mental rehearsal control does not tease apart the spe-
cific effects of the neural target modulations, but rather the addi-
tive value of the interface and feedback presentation themselves.  
A no-treatment control may be useful for determining whether 
there are clinical effects that justify further investigations, but it 
does not isolate any non-specific effects.

On top of these condition-specific confounds, two general con-
founds may occur that could possibly be dealt with. First, it is known 
that subjects vary in their ability to regulate brain activation. These 
individual differences in NF learning capabilities may be predicted 
via behavioural99, functional100,101, or anatomical102,103 indices and 
therefore should be taken into consideration when allocating partici-
pants to study groups. Second, a unique methodological issue arises 
when specifically targeting the NF-general processes for modula-
tion (for example, reward93,104,105 and control94,106,107). Such targets are 
even more problematic to control for, as they are recruited by the 
mere performance of a NF task, with every possible matched control 
involving the target process (for a possible solution, see Fig. 3a).

Hence it appears that each of the four common NF control con-
ditions consist of process engagements that do not allow for the 
disentanglement of target from NF-general effects. An ideal control 
condition requires a genuine NF intervention that manipulates the 
same general processes, but without any specific modulations over 
and above the general NF processes (Fig. 2). In line with the process-
based framework, we suggest a control condition that should pro-
duce such a psychophysiological state, termed ‘randomized region 
of interest (ROI) NF’ (Fig. 3b). In a randomized ROI NF group, 
participants would be randomly allocated to one of several sub-
groups of different target processes. The resulting group, matched 
in numbers of participants to the experimental group, would have 
participants modulating the NF-general processes with authentic 
feedback, just as in the experimental group, but with the specific 
effects of the different neural targets averaged out across all sub-
groups, as each would receive a different neural target to regulate.

This may lead to the cancelling-out of confounds related to addi-
tional processes modulations. Nonetheless, the same reward-related 
modulability confound that affects alternative NF and inverse NF 

NF processes modulations

SpecificGeneralControl conditions

Control RewardLearning Target

Alternative NF ✓ ✓ ✓✓

Inverse NF ✓ ✓ ✓✓

Yoked sham NF ✓ ✓X X

Mental rehearsal ✓XXX

✓ ✓ ✓ XIdeal control condition
(e.g. randomized ROI NF)

Fig. 2 | NF control conditions from a process-based perspective. Each 
control condition is characterized by the manner in which it manipulates 
the NF-general processes and by whether it also manipulates a distinct 
target process (far-right column). Green circles with a white check 
mark indicate a process modulation that is similar to the experimental 
condition; a black check mark indicates a process modulation that varies 
from the experimental condition; white circles with x marks indicate 
no process modulation. The ideal control condition (marked in grey) 
should manipulate the general task processes in the same manner as 
the experimental condition, without specifically modulating any other 
target process, as may be accomplished by the suggested randomized 
ROI NF condition.
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Fig. 3 | Process-based experimental designs. a, Differentiating NF general processes. To distinctly target motivational processes without contaminating 
control conditions with the target process, one may employ an intermittent protocol, which excludes rewarding feedback from the regulation phase and 
presents it in a separate feedback block. Thus, neural activation during the ‘regulate’ screen should be specific to the targeted process in each group. Similarly, 
targeting attentional or executive functions entails an implicit NF protocol43,55 that reduces recruitment of cognitive resources in relation to standard explicit 
NF protocols, thus preventing, to a substantial extent, the contamination of control conditions with such target processes. These protocols may serve both 
in clinical settings that aim to determine specificity and in basic investigation of NF underlying mechanisms. b, Randomized ROI NF control condition. In 
randomized ROI NF, each participant is randomly assigned to one of K subgroups of different target processes (red, brown, and yellow). While in each 
subgroup a specific neural target is modulated along with the general task processes (green), group-level modulations (right panel) include only the averaged 
mutual general processes (with no specific target process). Conversely, in an experimental NF group, all participants modulate both the general and target 
processes (green and blue, respectively). Therefore, group-level modulations include both the general and the reoccurring target processes. Consequently, by 
comparing both groups, target-specific effects could be teased apart from the general NF effects. To prevent reward-related confounds, modulability levels 
of randomized ROI NF targets should be as similar to the experimental target as possible, to the extent that current literature suggests. Similarly, to avoid 
undesirable learning discrepancies, allocation into study groups could be counterbalanced with respect to predicted individual learning capabilities.
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should apply here. However, in randomized ROI NF, this con-
found is moderated by the same concept of averaging out varying 
task effects between subgroups. While each subgroup may differ 
in its reward modulations, the overall group reward modulations 
should average to the mean level of all selected targets. It follows 
that differences in reward modulations between an experimental 
target NF and a randomized ROI NF group would be restricted to 
the difference from a mean reward modulation value, correspond-
ing to the mean level of task difficulty. This contrasts with alter-
native and inverse NF that may coincidently produce large and 
unaccounted-for reward-related differences, as shown above. Hence 
given no prior knowledge on targets modulability, randomized ROI 
NF should yield a preferable psychophysiological state in terms of  
general NF processes modulations.

Moreover, future methodological studies could provide essential 
information on NF targets modulability in two ways: one, different 
neural targets may be directly compared to one another, as has been 
recently demonstrated for NF to visual areas91; second, modulability 
of different neural targets could be inspected in a meta-analysis or 
a critical review, by assessing NF success across all applied neural 
targets in fMRI-NF studies, thus composing a ‘modulability index’ 
for NF targets (Fig. 3b). Such studies should enable informed target 
selection in the future, such that control targets could resemble the 
experimental target in their level of modulability, thereby further 
minimizing reward-related confounds, for randomized ROI NF as 
well as for alternative NF control condition.

Finally, it is advisable to avoid major differences in the complexity 
of the interfaces employed to accommodate each randomized ROI 
NF subgroup and the interface used by the experimental group. To 
achieve this without forfeiting process specificity, one could induce 
process-specific contexts via simple contextual interface, similar to 
the one employed by Paret et al.69. For example, subgroups for neural 
targets of emotion regulation, approach motivation, and potential 
threat could be contextualized via aversive, appetitive, and threat-
related stimuli, respectively, changing only the content of the pictures 
with all other interface features remaining constant. Alternatively, 
one could establish a modular immersive scenario (Fig. 1b) that can 
differentially accommodate several functional processes.

Consequently, a randomized ROI NF control group should dif-
fer from an experimental NF group only in the lack of a specific 
target process. Therefore, it should enable dissociation between tar-
get process effects and NF general effects, supporting a more con-
cise conclusion regarding treatment specificity of NF interventions, 
using only two study groups.

Conclusions and future avenues of research
In the current perspective, we presented a new framework for NF, 
termed process-based NF. This framework suggests that NF interven-
tions should target dysfunctional processes with defined neural sub-
strates rather than clusters of symptoms, thus adopting a dimensional 
approach toward mental disorders. Accordingly, the different aspects 
of the intervention (neural target selection, feedback interface, and 
clinical outcome measures) should correspond with the target pro-
cess to optimally ameliorate dysfunctions. Specifically, we suggest 
that process targeting could be maximized by relying on current neu-
roscientific theoretical and practical knowledge regarding the neu-
ral substrates of functional processes, moving beyond single-region 
NF toward alterations in network activity and connectivity patterns. 
We further suggest the development of process-specific interfaces 
with contextual cues and the enhancement of process engagement 
via immersive VR and/or AR technologies. Additionally, we show 
that a process-based approach allows a more precise methodology 
for determining the specificity of NF effects. To that end, we propose 
several methodological designs and a new control condition that may 
enable the disentanglement of general from target-specific effects, an 
unresolved issue in current NF methodology.

Some current developments that are discussed above, such 
as dynamic causal modelling NF, DecNef, and simple contextual 
feedback interfaces are initial instances that relate to the process-
based NF approach, each dealing with separate aspects of NF. Our 
outlined framework integrates these developments into a unify-
ing schema that provides a clear rationale for the construction of 
all critical stages of NF interventions. The framework further pre-
scribes other suggestions, such as the utilization of immersive VR 
and AR technologies for process targeting and the process-based 
application of EFP models for improved accessibility, as well as the 
use of different feedback protocols and a new control condition for 
determining specificity. These new propositions, however, have yet 
to be fully developed and validated. Thus, future interventional 
NF studies that adopt the proposed framework may enhance our 
knowledge of the efficacy of NF across neuropsychological domains 
and diagnostic groups and may further refine the framework’s fea-
tures. Importantly, the process-based framework calls for many 
modifications; however, it is not mandatory to bind them together. 
Researchers who wish to enhance NF efficacy or to better determine 
specificity may adopt some suggestions while passing over other 
advocated guidelines. Nonetheless, based on the considerations in 
this paper, we would argue that a process-based approach that har-
monizes neural targets, feedback interfaces, and outcome measures 
is crucial for the further development of NF into a scientifically  
precise and clinically applicable neuromodulation tool.
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