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Abstract

           Neurofeedback training has been shown to influence behavior in healthy participants as

          well as to alleviate clinical symptoms in neurological, psychosomatic, and ps ychiatric

         patient populations. However, many real-time fMRI neurofeedback studies report large

           inter-individual differences in learning success. The factors tha t caus e this vast variability

         between participan ts remain unknown and the ir identification could enhance treatme nt

            success. Thus, here we employed a meta-analytic approach including data from 24 dif-

            ferent neurofeedback studies with a tota l of 401 participants, including 140 patien ts, to

           determine whether leve ls of a ctivity in target brain region s du ring pretraining functional

           localizer or no-feedba ck runs (i.e., self-regulation in the absence of neurofeedback) could

         predict n eurofeedback learning s uccess. We observe d a slightly positive correlation

          between pretraining activity levels during a functional localizer run a nd n eurofeedback

            learning succes s, but we were not able to identify common b rain-based success predic-

              tors across our diverse cohort of studies . Therefore , advances need to be m ade in find-

           ing robust models and me asures of general neurofeedback learning, an d in increasing

            the current study d atabase to allow for investigating furthe r factors that m ight influence

 neurofeedback learnin g.

K E Y W O R D S

       fMRI, functional neuroimaging, learning, meta-analysis, neurofeedback, real-time fMRI

  1 | I N T R O D U C T I O N

       During the last years, neurofeedback using real-time functional

        magnetic resonance imaging (fMRI) has been gaining increasing atten-

       tion in cognitive and clinical neuroscience. Real-time fMRI-based

         neurofeedback enables subjects to learn control over brain activity in

          localized regions of interest (ROIs). Brain areas that have been investi-

        gated in fMRI-based neurofeedback studies include the anterior cin-

          gulate cortex (deCharms et al., 2005; Emmert et al., 2014; Gröne

            et al., 2015; Guan et al., 2014; Li et al., 2013), anterior insula

            (Yao et al., 2016), amygdala (Brühl et al., 2014; Gerin et al., 2016;

            Keynan et al., 2016; Nicholson et al., 2017; Paret et al., 2014; Young

          et al., 2014), auditory cortex (Emmert, Kopel, et al., 2017; Haller,

      Birbaumer, & Veit, 2010), defaultmodenetwork (DMN; McDonald

       et al., 2017), dorsolateral prefrontal cortex (Sherwood, Kane,

         Weisend, & Parker, 2016), hippocampus (Skouras et al., 2020), insula

           (Buyukturkoglu et al., 2015; Caria et al., 2007; Emmert et al., 2014;

          Frank et al., 2012; Zilverstand, Sorger, Sarkheil, & Goebel, 2015), motor

       cortex (Auer, Schweizer, Frahm, 2015; Blefari, Sulzer, Hepp-Reymond,

           Kollias, & Gassert, 2015; Buyukturkoglu et al., 2013; Marins et al., 2015;

          Scharnowski et al., 2015; Yoo, Lee, O'Leary, Panych, & Jolesz, 2008),

       nucleusaccumbens (Greer, Trujillo, Glover, & Knutson, 2014), para-

       hippocampalgyrus (Scharnowski et al., 2015), ventral tegmental area

         (MacInnes, Dickerson, Chen, & Adcock, 2016; Sulzer et al., 2013),

        and the visual cortex (Scharnowski, Hutton, Josephs, Weiskopf, &

         Rees, 2012; Shibata, Watanabe, Sasaki, & Kawato, 2011). More recently,

        functional brain networks have also been successfully trained employing

     connectivity-informed neurofeedback in networks sub-serving emotion

           regulation (Koush et al., 2015), attention (Koush et al., 2013), motor con-

          trol (Liew et al., 2016; Megumi, Yamashita, Kawato, & Imamizu, 2015),

         craving (Kim, Yoo, Tegethoff, Meinlschmidt, & Lee, 2015), and executive

    control (Spetter et al., 2017).
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       Real-time fMRI neurofeedback has been shown to improve

        behavioral and cognitive functions in healthy participants (e.g., Rota

          et al., 2009; Scharnowski et al., 2012; Scharnowski et al., 2015;

           Sherwood et al., 2016; Shibata et al., 2011), and to reduce clinical

       symptoms in neurological and psychiatric patient populations, such

         as patients suffering from adipositas (Frank et al., 2012), alcohol

          and nicotine addiction (Canterberry et al., 2013; Hanlon et al., 2013;

            Hartwell et al., 2016; Karch et al., 2015; Kim et al., 2015; Li

        et al., 2013), borderline personalitydisorder (Paret et al., 2016),

          chronic pain (deCharms et al., 2005; Guan et al., 2014), depression

           (Linden et al., 2012; Young et al., 2014; Young et al., 2017),

         Huntington's disease (Papoutsi et al., 2018; Papoutsi et al., 2020),

       obsessive compulsory disorder (Buyukturkoglu et al., 2015), Parkinson's

         disease (Buyukturkoglu et al., 2013; Subramanian et al., 2011), phobia

         (Zilverstand et al., 2015), post-traumatic stress disorder (Gerin et al.,

         2016; Nicholson et al., 2017), and tinnitus (Emmert, Kopel, Koush,

             Maire, Senn, Van De Ville, et al., 2017; Haller et al., 2010). The increas-

           ing interest in real-time fMRI NFB is also indicated by the rapidly

          rising number of publications in this field, which, according to a

    PubMed search (https://www.ncbi.nlm.nih.gov/pubmed/) using the

         search words neurofeedback AND fMRI rose from 11 studies publi-“ ”

             shed in 2009 to 70 studies being published in 2019 alone, with a total

     number of 430 publications to date.

       However, not every individual can benefit from neurofeedback

      training and neurofeedback learning success differs substantially

        between individuals. In fact, many studies report participants who

           were unable to gain control over their own brain activity, even after

          multiple training sessions. In these studies, an average of about 38%

          of all participants failed to modulate their own brain activity and

         were not able to reach predefined goals after neurofeedback training

         (Bray, Shimojo, & O'Doherty, 2007; Chiew, LaConte, & Graham, 2012;

          deCharms et al., 2005; Johnson et al., 2012; Ramot, Grossman, Fried-

           man, & Malach, 2016; Robineau et al., 2014; Scharnowski et al., 2012;

           Yoo et al., 2008). This failure to modulate brain activity, also referred

      to as the neurofeedback inefficacy problem (Alkoby, Abu-Rmileh,“ ”

           Shriki, & Todder, 2017), leads to a reduction in overall efficiency of

       neurofeedback training and hampers translation to clinical interven-

          tions. To date, the factors that cause neurofeedback inefficacy as well

        as the large inter-individual variability in neurofeedback learning suc-

         cess in the field of real-time fMRI neurofeedback remain unknown.

    Interestingly, neurofeedback studies based on

      electroencephalography(EEG) have reported very similar numbers of

          participants failing to gain control over their own brain activity (e.g.,

         Enriquez-Geppert et al., 2014; Zoefel, Huster, & Herrmann, 2011). How-

        ever, despite intrinsic similarities shared by neurofeedback tasks across

      imaging modalities, EEG-based and fMRI-based neurofeedback differ

        substantially with regard to the underlying technology, methods and

        mechanisms. In this meta-analysis, we focus selectively on fMRI-based

        neurofeedback; for an overview of successful predictors in EEG-based

         neurofeedback we refer interested readers to Alkoby et al. (2017).

        Here, we investigate the influence of neural activity before

       neurofeedback training on neurofeedback learning success. In particular,

         we ask whether activity levels in the neurofeedback target region(s)

     during pr etrainin g no-feed backruns—runs wher e partici pants modulat e

         their brain activity in the targeted ROI without neurofeedback—or func-

        tional localizer runs can predict neurofeedback learning success in

       subsequent neurofeedback training runs. As pretraining brain activity

        already contains information on factors such as participant compliance

        and responsiveness to specific stimuli, we hypothesized that specific

         signal features (e.g., brain activity levels) extracted from the trained

        ROI during no-feedback or localizer runs before neurofeedback training

        are correlated with the respective participant's success in modulating

           their own brain activity. To test this hypothesis, we performed a meta-

        analysis on data from 24real-time fMRI neurofeedback studies (see

           Table 1), including a range of different target brain areas (>20ROIs), par-

      ticipants (261healthy participants and 140patients), and neurofeedback

       training methods (activi ty-based feed back as well as conn ectivity-based

feedback).

    2 | M A T E R I A L A N D M E T H O D S

   2.1 Received data|

         This meta-analysis required data that cannot be extracted from publi-

          cations alone. Therefore, we reached out to authors of real-time fMRI

         neurofeedback studies via the mailing list of the real-time functional

        neuroimaging community, and by directly contacting authors of real-

         time fMRI neurofeedback studies via e-mail and at conferences. As

          we communicated all inclusion criteria in this search for data, only

             authors of suitable data sets reached out to us and no studies had to

         be excluded. Inclusion criteria were at least one task-based functional

        run engaging the trained ROI/ROIs prior to neurofeedback training

           (e.g., a functional localizer run, a no-feedback run, or a task engaging

           the target ROI that was not used for localization). For increased gen-

           eralizability, we did not limit this study to a specific participant cohort,

         target ROI, or neurofeedback training method. A literature review rev-

         ealed that, to date, 126 real-time fMRI neurofeedback studies met

         these inclusion criteria and contained at least one task-based func-

     tional run engaging the trained ROI(s).

        Following our request, we received data from 24 independent

       neurofeedback studies with data from 261healthy participants [studies

             1, 2, 4, 5, 7, 9 15, 18– –21, 24] and 140 patients, including patients with

         alcohol abuse or dependence [14], anxiety disorder [14], cannabis abuse

         [14], cocaine use disorder [7], depression [14, 23], Huntington's disease

        [16, 17], obesity [22], obsessive–compulsive disorder [14], opioid abuse

         [14], schizophrenia [8], specific phobia [14], tinnitus [3], and tobacco

        use disorder [6]. 18studies conducted neurofeedback training on brain

       activity, while another eight studies provided connectivity-based feed-

      back (two studies investigated both activity—and connectivity-based

         neurofeedback). We did not receive data from studies that performed

        neurofeedback based on other measures, such as multivariate pattern

          analysis. Brain areas that were targeted in these studies include the

        amygdala, an terior cingulate cor tex (ACC), an terior insula, auditory cor-

      tex, dorsolateral prefrontal cortex (dlPFC), dorsomedialprefrontal cortex

       (dmPFC), medial prefrontal cortex (mPFC), orbitofrontal cortex (OFC),
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      parahippocampal gyrus (PHG), posterior cingulate cortex (PCC),

       precuneus, premotor cortex (PMC), primary motor cortex (M1),

       somatomotor cortex (SMC), superior parietal lobule (SPL), supplemen-

         tary motor area (SMA), ventral tegmental area (VTA), ventromedial pre-

           frontal cortex (vmPFC), and the visual cortex (Figure 1). Table 1 provides

           an overview over all studies(Auer et al., 2015; Blefari et al, 2015;

            Emmert, Kopel, et al., 2017 ; Kim et al., 2015; Kir schner et al., 20 18;

            Koush et al., 2015, Koush et al., 2013; MacInnes et al., 2016; Marins

           et al., 2015; McDonald et al., 2017; Megumi et al., 2015; Papoutsi

           et al., 2020, Papoutsi et al., 2018; Scharnowski et al., 2012, 2015;

           Skouras & Scharnowski, 2019; Sorger et al., 2018; Spetter et al., 2017;

           Yao et al., 2016; Young et al., 2017; Zich et al., 2020).

       2.2 Received data on pretraining activity and|

  neurofeedback learning success

        We asked the authors to provide one value determining

        neurofeedback success for each neurofeedback training run, and one

         value determining pretraining brain activity levels within the ROI that

         was trained during neurofeedback. In particular, we asked for individ-

         ual data for each participant of an experimental neurofeedback train-

         ing group, excluding control groups such as receiving sham feedback

         or modulating brain regions of no interest. Most contributions con-

         sisted of data that were already fully analyzed and published.

        For 23 studies [1–7, 9 24] we received fully processed–

       neurofeedback success measures for each neurofeedback training run.

        For reasons of comparability to previously published results, neuro-

          feedback success per run was defined as the measure of neurofeedback

          success that has been primarily assessed in the respective study and,

         for published data, has been previously reported in the corresponding

            publications. In one case (Kirschner et al. [in prep.]) [8], where raw data

        were provided, we calculated neurofeedback success based on standard

        general linear model (GLM) analyses, as described below. Overall

        neurofeedback learning success was then calculated based on these

         per-run success measures (see below). In general, given the heterogene-

          ity of the feedback measures (e.g., percent signal change, DCM Bayes

          Factor, etc.), aggregation of information is only possible at the level

       of learning curves based on study-specific neurofeedback success

measures.

          For most studies, we also received fully processed beta values for

         average pretraining activity levels within the trained ROI. In some

          cases, we extracted these values using target ROI masks and contrast

            images of the corresponding pretraining run [3, 6, 9, 10, 18], or from

   raw data [7, 14].

      2.3 Data analysis of raw data|

            For the study that shared the raw data, we analyzed the data using

         a standard preprocessing procedure in native space (slice time correc-

       tion, motion correction, coregistration, spatial smoothingwith a Gauss-

            ian kernel of 6 mm full width at half maximum, no normalization) using

   SPM12 (http://www.fil.ion.ucl.ac.uk/spm/software/spm12/). We then

          performed first level GLM analyses on the neurofeedback as well as

       the pretraining runs to modelthe corresponding study's neurofeedback

         blocks or blocks engaging the ROI during pretraining runs, respectively.

        To define pretraining activity, we extracted the average activity

           over all voxels within the trained ROI. When several ROIs were trained,

           the aver age over all ROIs was calculated. Acti vity was assessed by the

       beta weight representing the ROI-engaging task during pretraining.

        For this study, neurofeedback learning success for each neurofeedback

            training run was assessed in the same way, using the beta value rep-

     resenting the corresponding study's neurofeedback blocks.

                F I G U R E 1 Schematic representation of areas targeted in the neurofeedback experiments. Studies included in this meta-analysis trained

                   activity within and connectivity between more than 20 different cortical and subcortical regions of interest that are associated with various

                     behavioral functions. This figure is for overview purposes only and does not reflect the exact coordinates or shape of the chosen ROIs.

               Abbreviations: ACC, anterior cingulate cortex; dlPFC, dorsolateral prefrontal cortex; dmPFC, dorsomedial prefrontal cortex; M1, primary motor

                cortex; PCC, posterior cingulate cortex; PMC, pre-motor cortex; PHC, parahippocampal cortex; SMA, supplementary motor cortex; VTA, ventral

 tegmental area
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  2.4 Meta-analysis|

          To date, there is no consensus on how neurofeedback learning suc-

           cess should be defined and measured. Thus, in order to improve gen-

        eralizability, we investigated the two most commonly used measures

     for assessing neurofeedback learning success(Thibault, MacPherson,

            Lifshitz, Roth, & Raz, 2018), namely (a) the slope of the learning curve

          (i.e., the regression line over the success measures for each training

        run), and (b) the difference between neurofeedback regulation success

           during the last and the first training run. Success measures of studies

       where participants had to perform down-regulation were multiplied

          by 1. For each study, we then calculated the correlation between−

        pretraining brain activity and these two success measures using

 Spearman correlations.

       In addition, we investigated whether pretraining ROI activity

        levels might be more predictive of success during neurofeedback

         training runs that were performed in close temporal distance to

         the pretraining run. To this end, we performed correlation testing

        between pretraining activity levels and neurofeedback success in the

   very first training run.

         First, we performed a meta-analysis over all the 24 studies

        included here. Subsequently, we repeated the meta-analysis for five

          different groupings of study data, to avoid confounds that may have

        been caused by differences between patients and healthy subjects,

    activity-based and connectivity-based neurofeedback paradigms,

      functional domains, or type of pretraining run:

      1. Data from healthy subjects performing activity-based

neurofeedback.

      2. Data from healthy subjects performing connectivity-based

neurofeedback.

      3. Data from patients performing activity-based neurofeedback.

           4. Data split according to the functional domain of the trained ROI:

          (a) sensory areas, (b) motor areas, (c) reward areas, (d) emotion

      processing area/amygdala, (e) higher order cognitive processing

  areas/DMN and PFC.

            5. Data split according to the type of pretraining run that was per-

         formed: (a) functional localizer run, (b) no-feedback run, (c) ROI-

       engaging run that was not used for localization.

            Due t o small sample sizes, fu rther sub divisions of the data in (4) a nd

       (5) according to patients/healthy subjects and activity/connectivity mea-

        sures were not performed. In general, meta-analyses performed with

            small sample sizes, for instance for Group (2), should be read with cau-

           tion. For this reason, we do not provide results for the grouping

     “patients performing connectivity-based neurofeedback” which only

   consisted of three studies.

             For each of these five groups as well as the entire sample (all data

        from all studies), we calculated overall meta-correlations using a

          weighted (weights based on the number of participants included in the

       study) random-effects model. All statistical meta-analyses were per-

           formed using the package in R using the function (www.meta metacor

    cran.r-project.org/web/packages/metacor). Studies that included both

        patients and healthy subjects, and studies that investigated both

       connectivity- and activity-based neurofeedback were split into several

        corresponding sub-groups accordingly. One study that trained a differ-

           ent ROI for each participant [21] was not considered in the ROI-based

          group split. Further, some of the studies included in the no-feedback

        group or the ROI-engaging paradigm group included a functional

          localizer scan in their experimental design but, due to data dropouts,

       the corresponding no-feedback or ROI-engaging paradigm runs were

          used to extract activity levels. In addition, we performed several ana-

         lyses to quantify heterogeneity of effect sizes using the Meta-Essentials

    tool (Suurmond & Hak, 2017).

  3 | R E S U L T S

     3.1 Meta-analysi s over all studies|

            The meta-analysis over the entire sample of all studies did not reveal a

       significant relationship between pretraining activity levels and neither

         of the two neurofeedback success measures (slope of the learning

               curve: r(27) = 0.02, = .80; last versus first run: r(27) = 0.00,− p − p = . 94).

         Further, pretraining activity levels did not show a significant correlation

        to neurofeedback success during the very first neurofeedback run

         (r(27 ) = 0 .08, p = .36). Heterogeneity analysesindicated low heterogene-

          ity of effect sizes (Higgins, Thompson, Deeks, & Altman, 2003), both

             for the slope of the learning curve (Q = 30.13, Q-df = 3.13, pQ = 0.3 1,

I
2

  = 10.38%, T
2

          = 0.01, T = 0.10), and for the last versus first

         neurofeedback training run (Q = 27.61, Q-df = 0.61, pQ = 0.4 3,

I 2 = 2.2 0%, T2         = 0.00, T = 0.04). Correlations between pretraining activ-

          ity levels and success in the very first neurofeedback run were

        moderatelyheterogeneous across studies (Q = 49.35, Q-df = 22.35,

p Q = 0.0 05, I 2   = 45.29%, T 2           = 0.07, T = 0.27). Figures 2, 3, and 4 show

         forest plots for correlations between pretraining activity levels and the

          slope success measure, the difference between the last and the first

        runsuccess measures, and success during the very first neurofeedback

 run, respectively.

     3.2 Activity-base d neurofeedback with healthy|

subjects

       For activity-based neurofeedback with healthy subjects, we found

       no significant relationship between pretraining activity levels and

      neurofeedback learning success for neither neurofeedback success

           measures; that is, neither based on the slope of the regression line

              over all neurofeedback runs (r = 0.04, = .57), nor based on the differ-p

              ence between the last and the first run (r = 0.04, = .56). Heterogene-p

        ity measures for activity-based studies on healthy subjects were

        smaller than heterogeneity measures for all studies. They indicated

         very low heterogeneity of effect sizes, both for the slope-based

      (Q = 3.24, Q-df < 0, p Q   = 0.99, I2   = 0.00%, T 2      = 0.00, T = 0.00) and

        the difference-based (Q = 2.36, Q-df < 0, p Q   = 1.00, I
2

 = 0.00%,

T
2

        = 0.00, T = 0.00) neurofeedback learning success measure.
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                F I G U R E 2 Averaged weighted Spearman correlations between pretraining activity levels and neurofeedback learning success as measured by

                   the slope of the learning curve. Circle sizes represent the corresponding study's sample sizes. Further, the coloring scheme reflects the

                  corresponding grouping of the subjects (healthy subjects/patients) and the studies (type of feedback, trained target region(s) and type of

               pretraining activity levels). Overall, no correspondence between pretraining activity levels and neurofeedback learning success was found.

                Abbreviations: amy, amygdala; DMN, default mode network; n.a., not applicable; no-fb: no feedback; loc, localizer; ROI-eng, ROI-engaging
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       For activity-based neurofeedback studies with healthy subject s, we

        also found no sig nificant relationship between pr etraining activity levels

               and success in t he first neurofeedback run (r = −0.06, p = .49), wit h 6 of

        12 stu dies even s howing a negative correlation. Heterogeneity measures

            again showed l ow heterogeneity of effect sizes (Q = 12.45, Q-df < 0,

p Q = 0.33, I
2

  = 11.68%, T
2

    = 0.01, T = 0.10).

              F I G U R E 3 A v e r a g e d w e i g h t e d S p e a r m a n c o r r e l a t i o n s b e t w e e n p r e t r a i n i n g a c t i v i t y l e v e l s a n d n e u r o f e e d b a c k l e a r n i n g s u c c e s  s a s

                  m e a s u r e d b y t h e d i f f e r e n c e b e t w e e n n e u r o f e e d b a c k s u c c e s s i n t h e l a s t a n d t h e f i r s t n e u r o f e e d b a c k r u n . C i r c l e s i z e s r e p r e s e n t t h e

                c o r r e s p o n d i n g s t u d y ' s s a m p l e s i z e s . F u r t h e r , t h e c o l o r i n g s c h e m e r e f l e c t s t h e c o r r e s p o n d i n g g r o u p i n g o f t h e s u b j e c t s ( h e a l t h y s u b j e c t s /

                  p a t i e n t s ) a n d t h e s t u d i e s ( t y p e o f f e e d b a c k , t r a i n e d t a r g e t r e g i o n ( s ) a n d t y p e o f p r e t r a i n i n g a c t i v i t y l e v e l s ) . O v e r a l l , n o c o r r e s p o n d e n c e

                b e t w e e n p r e t r a i n i n g a c t i v i t y l e v e l s a n d n e u r o f e e d b a c k l e a r n i n g s u c c e s s w a s f o u n d , e x c e p t f o r w h e n o n l y i n v e s t i g a t i n g p r e t r a i n i n g a c t i v i t y

                  l e v e l s d u r i n g a f u n c t i o n a l l o c a l i z e r r u n . A b b r e v i a t i o n s : a m y , a m y g d a l a ; D M N , d e f a u l t m o d e n e t w o r k ; n . a . , n o t a p p l i c a b l e ; n o - f b , n o f e e d b a c k ;

   l o c , l o c a l i z e r ; R O I - e n g , R O I - e n g a g i n g
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                F I G U R E 4 Averaged weighted Spearman correlations between pretraining activity levels and neurofeedback learning success during the first

                neurofeedback run. Circle sizes represent the corresponding study's sample sizes. Further, the coloring scheme reflects the corresponding

                   grouping of the subjects (healthy subjects/patients) and the studies (type of feedback, trained target region(s) and type of pretraining activity

                  levels). Overall, no correspondence between pretraining activity levels and neurofeedback success in the very first neurofeedback run was found.

                Abbreviations: amy, amygdala; DMN, default mode network; n.a., not applicable; no-fb, no feedback; loc, localizer; ROI-eng, ROI-engaging
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    3.3 Connectivity-based neurofeedback with|

 healthy subjects

        Similar to the results on activity-based neurofeedback studies with

      healthy subjects, for connectivity-based neurofeedback studies on

         healthy subjects, we again found no significant correlation between pre-

         training activity levels and neurofeedback learning success (slope of the

               regression line: r = −0.04, = .85; last vs. first run difference: r = 0.06,p −

        p = .77). Heterogeneity measures for connectivity-based studies on

         healthy subjects indicated a moderate heterogeneity of effect sizes, for

        the slope-based (Q = 7.18, Q-df < 0, p Q   = 0.07, I2   = 58.24%, T 2  = 0.17,

             T = 0.41) and for the difference-based (Q = 8.41, Q-df < 0, p Q = 0.08 ,

I2   = 52.43%, T2        = 0.13, T = 0.36) neurofeedback learning success

measure.

       Pretraining activity levels were slightly predictive of neurofeedback

             success in the very first neurofeedback run (r = 0.38, p = .10 ). He tero-

        geneity analyses showed again moderate heterogeneity (Q = 9.99,

   Q-df = 5.99, p Q = 0.0 4, I
2

= 59.96 %, T
2

    = 0.17, T = 0.41).

     3.4 Activity-b ased neurofeedback wit h patients|

      For activity-based neurofeedback studies across different patient

         populations, we did not find a significant correlation between pre-

        training activity levels and neurofeedback learning success, for neither

        neurofeedback learning success measures (slope of the learning curve:

             r = − −0.13, = .20; last vs. first rundifference: r =p 0.14, = 0.19).p

              Here, 6 of 8, and 7 out of 8 studies showed a slightly negative rela-

        tionship, respectively. Heterogeneity of effects sizes was very low

       (slope: Q = 2.42, Q-df < 0, p Q   = 0.93, I2   = 0.00%, T 2     = 0.00, T = 0.00;

          last vs. first difference: Q = 2.79, Q-df = 0.79, p Q   = 0.90, I2  = 0.00%,

T2            = 0.00, T = 0.00). Pretraining activity levels in patients were also

          not predictive for neurofeedback success in the very first training run

             (r = 0.18, = 0.18; heterogeneity measures: Q = 11.13, Q-df = 4.13,p

p Q   = 0.13, I
2

  = 37.08%, T
2

    = 0.05, T = 0.23).

       3.5 Functional domain of the trained ROI|

        To investigate whether ROIs within specific functional domains would

         show stronger correlations than others, we clustered the studies based

          on the functional domain of the (main) neurofeedback target ROI(s). For

          neurofeedback success, as measured by the slope of the learning curve

             (see Table S1), we did not find significant effects for any of the assessed

       functional domains, that is, amygdala (emotion processing), DMN/PFC

       (mind wandering and higher cognitive functioning), motor functioning,

        reward processing, and other sensory domains. For neurofeedback suc-

            cess measured by the difference betwe en success in the first and the last

          neurofeedback run (see Table S2), we found a negative correlation for

            studies that focused on DMN/PFC regulation (r = −0.13, p < .001). We

          did not find significant effects for any functional domain clusters when

       investigating the correlation between pretraining activity levels and

         neurofeedback success during the first neurofeedback run (see Table S3).

     3.6 Type of pretraining run|

          Pretraining activity levels were either based on a n o-feedback run, a

            functional localizer run, or on another task engaging the ROI that was not

           used for localizing the ROI, for example, a finger tapping task when

         neurofeedback training was targeting the motor cortex [13]. Overall, stud-

          ies with a func tional localizer run showed a significant positive correlation

        between the localizer activity levels and neurofeedback learning success

        as measured by the difference between neurofeedback learning success

              in the last and the first neurofeedback run (r = 0.12, p = . 003). However,

          this correlation was not significant when success was measured by the

              slope of the learning curve (r = 0.09, = .20). For activity levels duringp

          other pretraining runs we did not observe a significant correlation with

          learning success. Further, none of the three types of pretraining run

       groups showed significant correlations between pretraining activity and

          the very first neurofeedback run (see Tables S4-S6 for exact values ).

  4 | D I S C U S S I O N

        Here, we performed a meta-analysis with 24 different fMRI-based

      neurofeedback studies to investigate whether pretraining activity

         levels can be used to predict neurofeedback learning success. In

         our data set of 401 subjects undergoing neurofeedback training, we

         did not find an overall significant relationship between these two

         measures, that is, ROI activity prior to neurofeedback training and

      neurofeedback learning success were not significantly correlated.

          One of the reasons for not having found an overall relationship

         between pretraining activity and learning success might be that the

           studies included in this meta-analysis are quite diverse in terms of, for

         example, the research question, the target ROI, the feedback signal

         and the population. On the other hand, heterogeneity analyses of

           effect sizes across all studies revealed that our sample of studies was

         sufficiently homogenous for a meta-analysis and that the result was

         unlikely to be confounded by single studies. Nevertheless, we aimed

         at partly mitigating heterogeneity by repeating the analysis for differ-

        ent groups containing only healthy participants or patients, activity-or

       connectivity-based neurofeedback, only studies with the same type

          of pretraining run, and by grouping studies based on the functional

       domain of the trained ROI. Unfortunately, further subclassifications

         in, for instance, studies who performed up- vs. down-regulation could

        not be performed due to too low sample sizes.

      4.1 Differences between healthy subjects and|

patients

        Neither healthy subjects nor patients showed a significant correlation

      between pretraining activity levels and neurofeedback learning

success.

         Interestingly, the majority of patient studies showed a negative cor-

       relation between neurofeedback learning success and pretraining activ-

          ity levels, while we observed more positive correlations for studies with
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         healthy subjects. This might be explained by symptom severity being

         associated with increased ROI activity, which again can influence a

      patient's neurofeedback learning performance. For example, patients

        suffering from substance use disorder who show highly increased

         craving-induced brain activity levels might be less successful in down-

        regulating craving-related brain signals than addiction patients who only

       show mildly increased craving-related brain activity. Increased brain

            activity levels in higher order brain areas might also be an indicator for

         decreased cognitive capacities as the performed task constitutes a–

        particular challenge to the patients, they might experience exhaustion

        during the following neurofeedback training runs. Further, aspects like

        differences in adaptation, motivation, deficits in sustained attention etc.

          that are often reported in specific patient populations, might also drive

   neurofeedback training success differences.

    4.2 Activity- versus connectivity-based|

neurofeedback

     Neither activity- nor connectivity-based neurofeedback studies

       showed a significant correlation between pretraining activity levels

      and neurofeedback learning success. Moreover, while heterogeneity

       measures for effect sizes of activity-based neurofeedback studies

           showed very low heterogeneity, this was not the case for effect sizes

     of connectivity-based neurofeedback studies. Here, heterogeneity

       measures of effect sizes revealed moderate heterogeneity, indicating

         that effect sizes in connectivity-based studies might be too diverse

          to be grouped together in one meta-analysis. This might be related

       to connectivity-based neurofeedback studies still being sparse with

        overall limited samplesizes. Another confounding factor might be that

         for connectivity-based studies pretraining activity levels are not as sim-

        ilar to neurofeedback success measures as for activity-based studies.

      Consequently, future studies should investigate whether pretraining

        levels based on connectivity are more predictive for neurofeedback

      learning success in connectivity-based neurofeedback studies and,

        in addition, whether effect sizes based on pretraining connectivity

          levels are less heterogeneous. In fact, a recent study found that

       DMN up-regulation learning and downregulation learning scores are

     partly determined by pre-neurofeedback resting-state eigenvector

        centrality of the PCC/PCu (Skouras & Scharnowski, 2019). Further,

         another study observed resting state connectivity to be predictive for

      neurofeedback learning success in patients with obsessive–compulsive

        disorder (Dustin Scheinost et al., 2014). Functional and effective

         connectivity measures might even be a suitable predictor for activity-

       based neurofeedback studies, as neurofeedback success is likely

          also influenced by the connectivity of the trained region(s) to other

         regions within the brain. For instance, Bassett and colleagues suggest

          that highly connected brain regions such as areas within the DMN,

          might be easier to train than less-connected brain areas (Bassett &

          Khambhati, 2017). This is also in line with recent suggestions that

       connectivity-based measures might be more promising for predicting

         complex higher order cognitive processes than measures based on sin-

         gle brain regions (see Horien, Greene, Constable, & Scheinost, 2020

         for a review on this topic). Indeed, several activity-based neuro-

       feedback studies report concomitant changes in brain connectivity

          (Lee et al., 2011; Rota, Handjaras, Sitaram, Birbaumer, & Dogil, 2011;

           Scharnowski et al., 2014; Scheinost et al., 2013; Zotev et al., 2011;

   Zweerings et al., 2019).

       Thus, future analyses should consider connectivity measures as

       predictors not just for connectivity-based neurofeedback studies, but

   also for activity-based studies.

     4.3 Type of pretraining run|

        Interestingly, when grouping together studies based on the paradigm

          of the run during which pretraining activity levels were collected, we

       observed a significant positive correlation between pretraining activity

         levels and neurofeedback success (as measured by the difference in

        neurofeedback success between the last and the first neurofeedback

          run) for studies with a functional localizer run. This indicates that

        pretraining activity levels might indeed be linked to neurofeedback

         learning success, but only when the neurofeedback target ROI is

           completely activated during the pretraining run, as it is the case in

         functional localizer runs. In contrast, in no-feedback and other ROI-

         engaging paradigms (i.e., not functional localizers), the target ROI may

         be engaged by the pretraining paradigm, however some voxels within

           the specified ROI may not be specifically involved in the neural pro-

      cesses under investigation. Consequently, when extracting pretraining

        activity levels from no-feedback and ROI-engaging (but not functional

         localizer) pretraining runs, more voxels than those that reliably acti-

          vate during the performed task contribute to the derived signal and,

       thus, limit its predictive power for neurofeedback success.

       In contrast to functional localizer runs, no-feedback runs

           (i.e., where the participants were performing the same task as during a

         neurofeedback run but without getting any feedback) did not predict

       neurofeedback learning success. Surprisingly, the no-feedback runs per-

        formed just before the neurofeedback training commenced were not

        even predictive of performance during the very first neurofeedback

         training run. No-feedback runs (also referred to as transfer runs“ ”

        when performed after neurofeedback training) are identical to the

         neurofeedback training runs (i.e., same ROI, same design, similar instruc-

           tions, similar mental task, etc.) except that no feedback signal is pres-

          ented. This indicates that providing feedback might only be a small

        experimental addition, but one that changes the paradigm significantly.

        Previous studies have already highlighted the discrepancy between pre-

         training no-feedback runs and neurofeedback runs by showing that no-

        feedback runs differ substantially from neurofeedback training runs in

         terms of functional connectivity changes (Haller et al., 2013), self-

        regulation performance (Robineau et al., 2014), and signal-to-noise ratio

        (Papageorgiou, Lisinski, McHenry, White, & LaConte, 2013). This also

         indicates that the feedback has a stronger effect on neurofeedback

          training success than the actual task the participant is performing in

        the scanner. Indeed, recent implicit neurofeedback studies show that

        neurofeedback learning is possible even when participants are not

        informed what the neurofeedback signal represents and are not
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          provided with mental strategy instructions that are related to the func-

           tion of the target ROI (Cortese, Amano, Koizumi, Kawato, & Lau, 2016;

        Koizumi et al., 2017; Shibata et al., 2011; Taschereau-Dumouchel

          et al., 2018). These findings show that neurofeedback runs are special

         in that they constitute their own specific experimental condition that

         is distinct from seemingly-related conditions such as transfer runs with-

         out neurofeedback. Thus, they should be analyzed separately and, for

        example, performance during no-feedback and training runs should not

          be combined in one continuous learning curve. This also indicates that,

            maybe, the very first neurofeedback run of a session might be a better

        predictor for neurofeedback learning than a no-feedback run and

     should be investigated in future studies.

    4.4 Neurofeedback learning measure|

        For the purpose of generalizability, we assessed neurofeedback learn-

             ing success by (a) the slope of the regression line over the per-run suc-

        cess measures, and (b) the difference between neurofeedback success

          during the last run compared to the first neurofeedback run. These

         two measures are frequently used in neurofeedback studies and they

          capture the efficiency of neurofeedback learning (slope) as well as the

         effect of neurofeedback learning (difference between the last and first

          run). These two measures are highly correlated with an average corre-

            lation of r = 0.78 across all studies. However, in the neurofeedback lit-

          erature there is still no generally accepted best measure for assessing

      neurofeedback learning success. Other potential success measures

         are, for example, the difference between pre- and post-training no-

           feedback runs (e.g., Auer et al., 2015; Koush et al., 2015; MacInnes

          et al., 2016; Megumi et al., 2015), or the behavioral/clinical improve-

           ments (e.g., deCharms et al., 2005; Emmert, Kopel, et al., 2017; Linden

           et al., 2012; Scharnowski et al., 2015; Young et al., 2017). One

          might speculate that predictions might have been better if we had

        used an alternative neurofeedback learning measure. On the other

          hand, pretraining activity was not even predictive of the very first

         neurofeedback training run activity (Table S6) and for this comparison

      identical measures (i.e., ROI activity) were used.

        The underlying problem with respect to defining a commonly

        accepted neurofeedback learning measure is that there is no

        established model of neurofeedback learning (Sitaram et al., 2016),

           thus making it difficult to define the key parameters involved in suc-

       cessful neurofeedback training. In addition, individual learning curves

          are quite diverse so that defining a one-fits-all learning measures that

        captures the multitude of manifestations of neurofeedback learning is

          very challenging. For that reason, running the analyses in parallel for

       two different neurofeedback performance measures is a pragmatic

        solution aiming to capture potential predictors of learning success.

     4.5 Predicting neurofeedback learning success|

         Overall, we were not able to predict neurofeedback learning success

        from pretraining activity levels. However, when observing only studies

         that defined their neurofeedback target ROI(s) based on a functional

        localizer task, we identified a positive correlation between pretraining

       activity levels and neurofeedback learning success (i.e., slope-based

      and difference-based). These results indicate that neurofeedback

        performance is connected to pretraining activity levels, but only

          when all neurofeedback target voxels can be actively engaged by the

        functional pretraining task. Nevertheless, even for this group of

         neurofeedback training studies, we did not find any significant results

          for individual studies. Further, the weak correlation of r = 0.12

          indicates that it is not possible to create considerably accurate predic-

          tions on which participants might be able to perform well during

         neurofeedback training and which participants will fail to do so.

         Taken t ogether, factors that can already b e assessed i n p retraining

         no-feedback and localizer runs, such as noise levels, participant compli-

            ance, or the responsiveness of a particular ROI, are not the main causes

       for the large inter-individual differences in neurofeedback learning

            success (Bray et al., 2007; Chiew et al., 2012; deCharms et al., 2005;

           Johnson et al., 2012; Robineau et al., 2014; Scharnowski et al., 2012;

   Yoo et al., 2008).

          This poses the question of what other information might be useful

        as a predictor for neurofeedback learning success. Obvious candidates

        would be standardized questionnaires or behavioral tasks that could

         be used for participant selection without having to acquire imaging

         data. Unfortunately, evidence for the predictive power of such mea-

           sures is sparse. While two studies found that the pain Coping Strate-

         gies Questionnaire (Rosenstiel & Keefe, 1983) and state anxiety scores

         (Spielberger, 2010) predict success in learning to regulate the ACC

          (Emmert et al., 2017) and emotion networks (Koush et al., 2015),

        respectively, another study did not find correlations between pre-

        training spatial orientation (Stumpf & Fay, 1983), creative imagination

          (Barber & Wilson, 1978), or mood scores (Zerssen, 1976) scores and

         success in learning to regulate pre-motor and para hippocampal ROIs

         (Scharnowski et al., 2015). A recent systematic review on psychological

        factors that might influence neurofeedback learning success in EEG

          and fMRI studies argues that factors such as attention and motivation

         might play an important role in successful neurofeedback training runs

         (Cohen & Staunton, 2019). However, although these are likely candi-

        dates for affecting neurofeedback learning, a concrete empirical effect

           of these factors has so far only been reported in one fMRI-based

         neurofeedback study(Chiew et al., 2012), showing a clear necessity for

     more empirical investigations on these factors.

         In EEG neurofeedback, several factors have been observed to be

        correlated with neurofeedback learning success (Alkoby et al., 2017),

            but they were only reported in single EEG studies have not yet been

        tested in fMRI-based neurofeedback studies. For instance, factors that

        seemed to have a positive influence on EEG-based neurofeedback

         learning success were regular spiritual practice (Kober et al., 2017)

         or a relaxing attitude towards one's ability to control technological

         devices (Witte, Kober, Ninaus, Neuper, & Wood, 2013). Also, other

         brain-based measures that are, for example, focused on areas more

          generally involved in self-regulation (Emmert et al., 2016) or on con-

          nectivity rather than activity levels (Horien et al., 2020)might be suit-

          able candidates that should be explored in future studies. The latter

   3850 HAUGG .ET AL

Printed by [W
iley O

nline Library - 081.109.118.252 - /doi/epdf/10.1002/hbm
.25089] at [11/09/2020].



      might be particularly relevant for connectivity-based neurofeedback

              studies, but we were not able to test this due to lack of suitable data.

      Further possible candidates for predicting neurofeedback success

           might be factors that have already been identified to be predictive of

       cognitive and behavioral training success in non-neurofeedback stud-

          ies, for example, activity in areas related to stimulus encoding and

          motor control has been found to be predictive of motor learning

          (Herholz, Coffey, Pantev, & Zatorre, 2016), and activity in the motor

         network has been found to predict training-related changes in work-

          ing memory (Simmonite & Polk, 2019). Finally, very recent work by

        Skouras et al. indicates that neurofeedback learning performance can

          be influenced by biological factors such as genetic and anatomical pre-

        dispositions (Skouras et al., 2019), thus demonstrating the complexity

         of the underlying processes and the need for using multimodal

 data sets.

       Hence, currently, no robust predictors for neurofeedback learning

          success have been identified, and, even if predictions can be made,

         they are likely study-specific (i.e., questionnaires that are specific to

         the trained ROI) and might not generalize across studies. Besides

       empirical studies, future studies using secondary mega-analyses might

         be a promising tool to identify factors that influence neurofeedback

learning.

  5 | C O N C L U S I O N

        Here, we aimed at finding general pretraining predictors for

        neurofeedback training success. We observed a slightly positive corre-

        lation between pretraining activity levels during a functional localizer

          run and neurofeedback learning success, but we were not able to

       identify common brain-based success predictors across our diverse

            cohort of studies. In order to achieve the goal of finding predictors for

         neurofeedback learning success advances need to be made: in devel-

        oping (a) models for neurofeedback learning, (b) establishing robust

         measures for neurofeedback learning, and (c) in increasing the data-

       base including acquired candidate measures across numerous studies.

            The reward of such a joint effort would be increased efficacy and cost-

       effectiveness of this promising scientific and therapeutic method.
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